

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

ATOMIC AND MOLECULAR PHYSICS SOLUTIONS

GATE-2010

- Q1. To detect trace amounts of gaseous species in a mixture of gases, the preferred probing tool is
 - (a) Ionization spectroscopy with *X*-rays
- (b) NMR spectroscopy

(c) ESR spectroscopy

(d) Laser spectroscopy

Ans: (a)

- Q2. A collection of N atoms is exposed to a strong resonant electromagnetic radiation with N_g atoms in the ground state and N_e atoms in the excited state, such that $N_g+N_e=N$. This collection of two-level atoms will have the following population distribution:
 - (a) $N_g << N_e$

(b) $N_{\sigma} >> N_{\rho}$

(c) $N_{\sigma} \approx N_{e} \approx N/2$

(d) $N_g - N_e \approx N/2$

Ans: (c)

Solution: In two level lair population inversion is possible to achieve at any power level. The maximum possible situation can be $N_g \approx N_e \approx \frac{N}{2}$

- Q3. Two states of an atom have definite parities. An electric dipole transition between these states is
 - (a) Allowed if both the sates have even parity
 - (b) Allowed if both the states have odd parity
 - (c) Allowed if the two states have opposite parities
 - (d) Not allowed unless a static electric field is applied

Ans: (c)

- Q4. The spectrum of radiation emitted by a black body at a temperature 1000 K peaks in the
 - (a) Visible range of frequencies
- (b) Infrared range of frequencies
- (c) Ultraviolet range of frequencies
- (d) Microwave range of frequencies

Ans: (a)

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- Q5. The three principal moments of inertia of a methanol (CH₃OH) molecule have the property $I_x = I_y = I$ and $I_z \neq I$. The rotation energy eigenvalues are
 - (a) $\frac{\hbar^2}{2I}l(l+1) + \frac{\hbar^2 m_1^2}{2I} \left(\frac{1}{I_z} \frac{1}{I}\right)$
- (b) $\frac{\hbar^2}{2I}l(l+1)$

(c) $\frac{\hbar^2 m_1^2}{2I} \left(\frac{1}{I_z} - \frac{1}{I} \right)$

(d) $\frac{\hbar^2}{2I}l(l+1) + \frac{\hbar^2 m_1^2}{2} \left(\frac{1}{I_z} + \frac{1}{I}\right)$

Ans: (a)

Solution: CH_3OH is example of symmetric rotator, where $I_x = I_y \neq I_z$, $(I_x + I_y = I \text{ and } I_z \neq I)$

The classical expression for energy is $E = \frac{1}{2I} (J_x^2 + J_y^2) + \frac{1}{2I_z} J_z^2$.

This can be expressed in term of $J^2 = J_x^2 + J_y^2 + J_z^2$ by adding and subtracting J_z^2

$$E = \frac{1}{2I}J^2 + \left(\frac{1}{2I_z} - \frac{1}{2I}\right)J_z^2.$$

Quantum mechanically $E = \frac{\hbar^2}{2I}J(J+1) + \frac{\hbar^2 m_J^2}{2} \left(\frac{1}{I_z} - \frac{1}{I}\right)$

- Q6. Match the typical spectra of stable molecules with the corresponding wave-number range
 - 1. Electronic spectra

(i) 10^6 cm⁻¹ and above

2. Rotational spectra

(ii) $10^5 - 10^6$ cm⁻¹

3. Molecule dissociation

(iii) $10^8 - 10^2$ cm⁻¹

(a) 1 - ii, 2 - i, 3 - iii

(b) 1 - ii, 2 - iii, 3 - i

(b) 1 - iii, 2 - ii, 3 - i

(d) 1 - i, 2 - ii, 3 - iii

Ans: (b)

- Q7. Consider the operations $P: \vec{r} \to -\vec{r}$ (parity) and $T: t \to -t$ (time reversal). For the electric and magnetic fields \vec{E} and \vec{B} , which of the following set of transformations is correct?
 - (a) $P: \overrightarrow{E} \to -\overrightarrow{E}, \overrightarrow{B} \to \overrightarrow{B}$;

(b) $P: \overrightarrow{E} \to \overrightarrow{E}, \overrightarrow{B} \to \overrightarrow{B}$;

 $T: \overrightarrow{E} \to \overrightarrow{E}, \overrightarrow{B} \to -\overrightarrow{B}$

 $T: \overrightarrow{E} \to \overrightarrow{E}. \overrightarrow{B} \to \overrightarrow{B}$

(c) $P: \overrightarrow{E} \to -\overrightarrow{E}, \overrightarrow{B} \to \overrightarrow{B}$;

(d) $P: \overrightarrow{E} \to \overrightarrow{E}, \overrightarrow{B} \to -\overrightarrow{B};$

 $T: \overrightarrow{E} \rightarrow -\overrightarrow{E}, \overrightarrow{B} \rightarrow -\overrightarrow{B}$

 $T: \overrightarrow{E} \to -\overrightarrow{E}, \overrightarrow{B} \to \overrightarrow{B}$

Ans: (b)

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Common Data Questions 8 and 9:

In the presence of a weak magnetic field, atomic hydrogen undergoes the transition:

 ${}^{2}P_{1/2} \rightarrow {}^{2}S_{1/2}$, by emission of radiation

- Q8. The number of distinct spectral lines that are observed in the resultant Zeeman spectrum is
 - (a) 2

(b) 3

(c)4

(d) 6

Ans: (c)

Solution: ${}^{2}p_{1/2} \rightarrow {}^{2}S_{1/2}$ is sodium D1 lines and it has total 4 zeeman components.

Q9. The spectral line corresponding to the transition

$${}^{2}P_{1/2}\left(m_{j}=+\frac{1}{2}\right) \rightarrow {}^{2}S_{1/2}\left(m_{j}=-\frac{1}{2}\right)$$

is observed along the direction of the applied magnetic field. The emitted electromagnetic field is

- (a) Circularly polarized
- (b) Linearly polarized

(c) Unpolarized

(d) Not emitted along the magnetic field direction

Ans: (a)

Solution: For
$${}^{2}P_{1/2}\left(m_{j}=+\frac{1}{2}\right) \rightarrow {}^{2}S_{1/2}\left(m_{j}=-\frac{1}{2}\right)$$

Here $\Delta m_i = +1$ gives σ^+ component.

In longitudinal observation σ^+ is circularly polarized.

GATE-2011

- Q10. The population inversion in a two layer material **CANNOT** be achieved by optical pumping because
 - (a) the rate of upward transitions is equal to the rate of downward transitions
 - (b) the upward transitions are forbidden but downward transitions are allowed
 - (c) the upward transitions are allowed but downward transitions are forbidden
 - (d) the spontaneous decay rate of the higher level is very low

Ans: (a)

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

A heavy symmetrical top is rotating about its own axis of symmetry (the z-axis). If I_1 , I_2

Q11.

(b)

Ans:

	and I_3 are the principal moments of inertia along x , y and z axes respectively, then					
Ans:	(a) $I_2 = I_3$; $I_1 \neq I_2$ (c)	(b) $I_1 = I_3$; $I_1 \neq I_2$	(c) $I_1 = I_2$; $I_1 \neq I_3$	(d) $I_1 \neq I_2 \neq I_3$		
Q12.	A neutron passing through a detector is detected because of					
	(a) the ionization it p	roduces	(b) the scintillation la	ight it produces		
	(c) the electron-hole pairs it produces					
	(d) the secondary particles produced in a nuclear reaction in the detector medium					
Ans:	(b)					
Q13.	213. An atom with one outer electron having orbital angular momentum l is placed in					
	magnetic field. The	e number of energy	levels into which the	e higher total angular		
	momentum state spli	ts, is				
	(a) $2l + 2$	(b) $2l + 1$	(c) 2 <i>l</i>	(d) $2l - 1$		
Ans:	(b)					
Q14.	For a multi-electron	i-electron atom l , L and S specify the one-electron orbital angular momentum,				
	total orbital angular momentum and total spin angular momentum, respectively. The selection rules for electric dipole transition between the two electronic energy levels, specified by l, L and S are					
	(a) $\Delta L = 0, \pm 1; \Delta S =$	$0; \Delta l = 0, \pm 1$	(b) $\Delta L = 0, \pm 1; \Delta S = 0$	$0; \Delta l = \pm 1$		
	(c) $\Delta L = 0, \pm 1; \Delta S = 0$	$\pm 1; \Delta l = 0, \pm 1$	(d) $\Delta L = 0, \pm 1; \Delta S = \pm 1$	± 1 ; $\Delta l = \pm 1$		
Ans:	(b)					
Q15.	in the emission spectrum of this state is of the order of					
	(a) 10^{-10} eV	(b) 10 ⁻⁹ eV	(c) 10^{-6} eV	(d) 10^{-4} eV		
Ans:	(c)					
Solution: $\Delta E = h\Delta v = \frac{h}{\Delta t} = \frac{6.625 \times 10^{-34} J - S}{10^{-9}} = \frac{6.625 \times 10^{-25}}{1.6 \times 10^{-19}} eV = 4.14 \times 10^{-6} eV$						
Q16.	The degeneracy of an excited state of nitrogen atom having electronic configura-					
	$1s^2 2s^2 2p^2 3d^1$ is					
	(a) 6	(b) 10	(c) 15	(d) 150		

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Solution: Degeneracy = 2(2l + 1)

- Q17. The far infrared rotational absorption spectrum of a diatomic molecule shows equilibrium lines with spacing 20 cm⁻¹. The position of the first Stokes line in the rotational Raman spectrum of this molecule is
 - (a) 20 cm⁻¹
- (b) 40 cm⁻¹
- (c) 60 cm⁻¹
- (d) 120 cm⁻¹

Ans: (c)

Solution: Given $2B = 20 \text{ cm}^{-1} \Rightarrow B = 10 \text{ cm}^{-1}$

The position of the first stokes line in the rotational Raman spectrum = 6B

$$\Delta \overline{v} = 6B = 6 \times 10 = 60 \, cm^{-1}.$$

GATE-2012

- Q18. The ground state of sodium atom (^{11}Na) is a $^2S_{1/2}$ state. The difference in energy levels arising in the presence of a weak external magnetic field B, given in terms of Bohr magnet on, μ_B , is
 - (a) $\mu_{\scriptscriptstyle R} B$
- (b) $2\mu_B B$
- (c) $4\mu_B B$
- (d) $6\mu_B B$

Ans: (b)

Solution: The energy separation in the Zeeman level is $\Delta E = gM_J(\mu_B B)$

For ${}^2S_{1/2}$ state; g=2 and $M_J=\pm\frac{1}{2}$. Therefore $\Delta E_1=+(\mu_B B)$ and $\Delta E_2=-(\mu_B B)$.

Thus $\Delta E = 2\mu_B B$

- Q19. The first Stokes line of a rotational Raman spectrum is observed at $12.96 cm^{-1}$. Considering the rigid rotor approximation, the rotational constant is given by
 - (a) 6.48 cm⁻¹
- (b) 3.24 cm⁻¹
- (c) 2.16 cm⁻¹
- (d) 1.62 cm^{-1}

Ans: (c)

Solution: The first Stoke line of the Rotational Raman spectrum lies at = 6B

Thus
$$6B = 12.96 \text{ cm}^{-1} \Rightarrow B = 2.16 \text{ cm}^{-1}$$
.

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q20. Match the typical spectroscopic regions specified in **Group I** with the corresponding type of transitions in **Group II**.

Group I

Group II

(P) Infra-red region

- (i) electronic transitions involving valence electrons
- (Q) Ultraviolet-visible region
- (ii) nuclear transitions

(R) X-ray region

(iii) vibrational transitions of molecules

(S) γ-ray region

- (iv) transitions involving inner shell electrons
- (a) (P, i); (Q, iii); (R, ii); (S, iv)
- (b) (P, ii); (Q, iv); (R, i); (S, iii)
- (c) (P, iii); (Q, i); (R, iv); (S, ii)
- (d) (P, iv); (Q, i); (R, ii); (S, iii)

Ans: (c)

- Q21. The term $\{j_1, j_2\}_J$ arising from $2s^1 3d^1$ electronic in j-j coupling scheme are
 - (a) $\left\{\frac{1}{2}, \frac{3}{2}\right\}_{2,1}$ and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{3,2}$

(b) $\left\{\frac{1}{2}, \frac{1}{2}\right\}_{10}$ and $\left\{\frac{1}{2}, \frac{3}{2}\right\}_{21}$

(c) $\left\{\frac{1}{2}, \frac{1}{2}\right\}_{1,0}$ and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{3,2}$

(d) $\left\{\frac{3}{2}, \frac{1}{2}\right\}_{2,1}$ and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{3,2}$

Ans: (a)

- Q22. The equilibrium vibration frequency for an oscillator is observed at 2990 cm⁻¹. The ratio of the frequencies corresponding to the first and the fundamental spectral lines is 1.96. Considering the oscillator to be anharmonic, the anharmonicity constant is
 - (a) 0.005
- (b) 0.02
- (c) 0.05
- (d) 0.1

Ans: (b)

Solution: $\omega_e (1 - 2x_e) = 2990 cm^{-1}$ and $\frac{2\omega_e (1 - 3x_e)}{\omega_e (1 - 2x_e)} = 1.96 \Rightarrow \frac{(1 - 3x_e)}{(1 - 2x_e)} = 0.98 \Rightarrow x_e = 0.02$.

GATE-2013

Q23. The number of spectral lines allowed in the spectrum for the $3^2 D \rightarrow 3^2 P$ transition in sodium is ______.

Ans: 28

Solution: The numbers of Zeeman components for ${}^2D_{5/2} \rightarrow {}^2P_{3/2}$ transition = 12

The numbers of Zeeman components for ${}^2D_{3/2} \rightarrow {}^2P_{3/2}$ transition = 10

The numbers of Zeeman components for ${}^2D_{3/2} \rightarrow {}^2P_{1/2}$ transition = 6

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- Q24. In a normal Zeeman Effect experiment, spectral splitting of the line at the wavelength 643.8 nm corresponding to the transition $5^{1}D_{2} \rightarrow 5^{1}P_{1}$ of cadmium atoms is to be observed. The spectrometer has a resolution of 0.01 nm. Minimum magnetic field needed to observe this is $(m_{e} = 9.1 \times 10^{-31} kg, e = 1.6 \times^{-19} C, c = 3 \times 10^{8} m/s)$
 - (a) 0.26T
- (b) 0.52T
- (c) 2.6T
- (d) 5.2T

Ans: (b)

Solution: Separation of Zeeman Components

$$\Delta v = \frac{eB}{4\pi m} \Rightarrow \Delta \lambda = \frac{\lambda^2}{c} \Delta v = \frac{\lambda^2}{c} \frac{eB}{4\pi m}$$

$$B = \frac{4\pi mc}{e} \frac{\Delta \lambda}{\lambda^2} = \frac{4 \times 3.14 \times 9.1 \times 10^{-31} \times 3 \times 10^8}{1.6 \times 10^{-19}} \times \frac{0.01 \times 10^{-9}}{\left(643.8 \times 10^{-9}\right)^2} = 0.514T$$

- Q25. The spacing between vibrational energy levels in CO molecule is found to be $8.44 \times 10^{-2} \, eV$. Given that the reduced mass of CO is $1.14 \times 10^{-26} \, kg$, Planck's constant is $6.626 \times 10^{-34} \, Js$ and $1 \, eV = 1.6 \times 10^{-19} \, J$. The force constant of the bond in CO molecule is
 - (a) 1.87 N/m
- (b) 18.7 N/m
- (c) 187 N/m
- (d) 1870 N/m

Ans: (c)

Solution: The energy of the quantum harmonic oscillator is

$$E = h \nu \left(n + \frac{1}{2} \right), \qquad n = 0,1,2,\dots$$

The frequency of oscillation is $v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$.

Where k = Spring constant and $\mu = \text{reduced mass}$

The energy levels are equally spaced with energy separation of $\Delta E = h v = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}}$

$$k = \left(\frac{2\pi}{h}\Delta E\right)^{2}\mu = \left(\frac{2\times3.14}{6.626\times10^{-34}}\times8.44\times10^{-2}\times1.6\times10^{-19}\right)^{2}\times1.14\times10^{-26} = 186.7 \, N/m$$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

GATE-2014

					
Q26.	The number of normal Zeeman splitting components of ${}^{1}P \rightarrow {}^{1}D$ transition is			\rightarrow ¹ D transition is	
	(a) 3	(b) 4	(c) 8	(d) 9	
Ans:	(a)				
Soluti	on: This is singlet trai	nsition.			
Q27.	The moment of inertia of a rigid diatomic molecule A is 6 times that of another rigid				
	diatomic molecule B . If the rotational energies of the two molecules are equal, then the				
	corresponding values of the rotational quantum numbers J_A and J_B are				
	(a) $J_A = 2, J_B = 1$		(b) $J_A = 3, J_B$	=1	
	(c) $J_A = 5, J_B = 0$		(d) $J_A = 6, J_B$	=1	
Ans:	(b)				
Solution: $\frac{J_A(J_A+1)}{J_B(J_B+1)} = \frac{I_B}{I_A} = \frac{I_B}{6I_B} \Rightarrow J_A = 6, J_B = 1$					
Q28.	The value of the magnetic field required to maintain non-relativistic protons of energy				
	1 <i>MeV</i> in a circular orbit of radius 100mm isTesla				
	(Given: $m_p = 1.67 \times 1$	$0^{-27} kg, e = 1.6 \times 10^{-19}$	C)		
Ans:	1.44				
Solution: $\frac{mv^2}{r} = qvB$, $E = \frac{1}{2}mv^2 \Rightarrow B = \frac{\sqrt{2mE}}{qr} = 1.44$					
Q29.	Neutrons moving w	ith speed $10^3 m/s$ ar	e used for the dete	ermination of crystal structure.	
	If the Bragg angle for the first order diffraction is 30° the interplannar spacing of the				
	crystal is ⁰	. (Given: m_n	$=1.675\times10^{-27}kg$	$h = 6.626 \times 10^{-34} J.s)$	
Ans:	4				
Solution: $2d \sin \theta = \lambda = \frac{h}{mv} \implies 2d \sin 30^{\circ} = \frac{6.62 \times 10^{-34}}{1.67 \times 10^{-27} \times 10^{3}} \implies d = 4 \text{ Å}$					
Q30.	The emission wavelength for the transition $D_2 \rightarrow F_3$ is 3122 Å. The ratio of population				
	of the final	to the initial	states at a	temperature 5000 <i>K</i> is	
	$(h = 6.626 \times 10^{-34} J - s, c = 3 \times 10^8 m/s, k_B = 1.380 \times 10^{-23} J/K)$				
	(a) 2.03×10^{-5}	(b) 4.02×10^{-5}	(c) 7.02×10^{-5}	$(d)9.83\times10^{-5}$	

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Ans: (c)

Solution:
$$\frac{N_F}{N_I} = \frac{\left(2J_f + 1\right)}{\left(2J_i + 1\right)}e^{-\frac{hc}{\lambda k_B T}} = \frac{5}{7}e^{-9.227641144} = 7.02 \times 10^{-5}$$

GATE-2015

Q31. In a rigid rotator of mass M, if the energy of the first excited state is (1 meV), then the fourth excited state energy (in meV) is _____.

Ans.: 10

Solution: $: E \propto J(J+1)$ where J = 0,1,2,3...

$$\Rightarrow \frac{E_4}{E_1} = \frac{4(4+1)}{1(1+1)} \Rightarrow E_4 = 10E_1 = 10 \text{ meV}, \text{ where } J = 0,1,2,3...$$

Q32. The binding energy per molecule of NaCl (lattice parameter is 0.563nm) is 7.956 eV.

The repulsive term of the potential is of the form $\frac{K}{r^9}$, where K is a constant. The value of the Modelung constant is _____ (upto three decimal places) (Electron charge $e = -1.6 \times 10^{-19} \, C$; $\varepsilon_0 = 8.854 \times 10^{-12} \, C^2 N^{-1} m^{-2}$)

Ans.: 2.80

Solution: The total energy of one ion due to the presence of all others in NaCl crystal is (considering univalent ions)

$$U(r) = -\frac{Ae^2}{4\pi\varepsilon_0 r} + \frac{K}{r^n}$$
, where A is Modelung Constant.

The potential energy will be minimum at the equilibrium spacing r_0 .

Thus
$$\left[\frac{dU}{dr}\right]_{r=r_0} = \left[\frac{Ae^2}{4\pi\varepsilon_0 r_0^2} - \frac{Kn}{r_0^{n+1}}\right] = 0 \Rightarrow K = \frac{Ae^2 r_0^{n-1}}{4\pi\varepsilon_0 n}$$

Thus, Binding energy of molecule or lattice energy is

$$U_{0} = \left[U\right]_{r=r_{0}} = -\frac{Ae^{2}}{4\pi\varepsilon_{0}r_{0}} + \frac{Ae^{2}r_{0}^{n-1}}{4\pi\varepsilon_{0}nr_{0}^{n}} = -\left[\frac{Ae^{2}}{4\pi\varepsilon_{0}r_{0}}\right]\left[\frac{n-1}{n}\right]$$

Given repulsive term of the potential is $\frac{K}{r^9}(:: n = 9)$

Also binding energy per molecule is $U_0 = 7.95 \ eV$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

The Modelung constant is $A = U_0 \times \frac{4\pi\varepsilon_0 r_0}{e^2} \times \frac{n}{n-1}$ and the lattice parameter is

 $a = 0.563 \ nm$. Thus the interatomic separation is $r_0 = \frac{a}{2} = 0.28 \ nm$.

$$\Rightarrow A = 7.95 \times 1.67 \times 10^{-19} J \times \frac{4 \times 3.14 \times \left(8.85 \times 10^{-12} C^2 N^{-1} m^{-2}\right) \times \left(0.282 \times 10^{-9}\right)}{\left(1.67 \times 10^{-19} J\right)^2} \times \frac{9}{8}$$

$$\Rightarrow A = \frac{7.95 \times 1.67 \times 4 \times 3.14 \times 8.85 \times 0.282 \times 9}{1.67 \times 8} \times 10^{-2} \Rightarrow A = 2.80$$

Q33. Match the phrases in Group I and Group II and identify the correct option.

Group I

Group II

(P) Electron spin resonance (ESR)

(i) radio frequency

(Q) Nuclear magnetic resonance (NMR)

- (ii) visible range frequency
- (R) Transition between vibrational states of a molecule
- (iii) microwave frequency

(S) Electronic transition

(iv) far-infrared range

- (a) (P-i), (Q-ii), (R-iii), (S-iv)
- (b) (P-ii), (Q-i), (R-iv), (S-iii)
- (c) (P-iii), (Q-iv), (R-i), (S-ii)
- (d) (P-iii), (Q-i), (R-iv), (S-ii)

Ans.: (d)

Solution: (P) Electron spin resonance (ESR) is achieved by Microwave frequency (iii)

- (Q): Nuclear magnetic resonance (NMR) is achieved by Radio frequency (i)
- (R): Transition between vibrational states of a molecule is achieved by radiation of far infrared range (iv)
- (S): Electronic transition is achieved by visible radiation (ii)
- Q34. The excitation wavelength of laser in a Raman effect experiment is 546 nm. If the Stokes' line is observed at 552 nm, then the wavenumber of the anti-Stokes' line (in cm^{-1}) is _____

Ans.: 18514

Solution: Raman displacement is

$$\Delta \overline{v} = \overline{v}_{AS} - \overline{v}_0 = \overline{v}_0 - \overline{v}_S \text{ or } \Delta \overline{v} = \frac{1}{\lambda_{AS}} - \frac{1}{\lambda_0} = \frac{1}{\lambda_0} - \frac{1}{\lambda_S}$$

where λ_{AS} , λ_0 , λ_S are wavelength of anti-stoke, exciting & stoke line.

From above relation we can write

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

$$\frac{1}{\lambda_{AS}} - \frac{1}{\lambda_0} = \frac{1}{\lambda_0} - \frac{1}{\lambda_S} \Rightarrow \frac{1}{\lambda_{AS}} = \frac{2}{\lambda_0} - \frac{1}{\lambda_S} \Rightarrow \frac{1}{\lambda_{AS}} = \frac{2\lambda_S - \lambda_0}{\lambda_0\lambda_S} \Rightarrow \lambda_{AS} = \frac{\lambda_0\lambda_S}{2\lambda_S - \lambda_0}$$

$$\therefore \lambda_{AS} = \frac{\left(546 \times 10^{-9} \, m\right) \left(552 \times 10^{-9} \, m\right)}{\left(2 \times 552 \times 10^{-9} \, m - 546 \times 10^{-9} \, m\right)} = \frac{546 \times 552}{558} \times 10^{-9} \, m$$

$$\Rightarrow \lambda_{AS} = 540.129 \times 10^{-9} \, m = 540.129 \times 10^{-7} \, cm$$

Anti-stoke wavenumber is
$$\overline{V}_{AS} = \frac{1}{\lambda_{AS}} = \frac{1}{540.129 \times 10^{-7} cm} = 18514 cm^{-1}$$

Q35. The number of permitted transitions from ${}^2P_{3/2} \rightarrow {}^2S_{1/2}$ in the presence of a weak magnetic field is _____

Ans.: 6

Solution: Zeeman splitting of ${}^2P_{3/2}$ and ${}^2S_{1/2}$ is shown below

The selection rule for Zeeman transactions are

$$\Delta M_J = 0$$
, $\pm 1 (0 \rightarrow 0 \text{ if } J = 0)$

There are total six transition in accordance with above selection rules.

GATE-2016

Q36. The molecule $^{17}O_2$

- (a) Raman active but not NMR (nuclear magnetic resonance) active.
- (b) Infrared active and Raman active but not NMR active.
- (c) Raman active and NMR active.
- (d) Only NMR active.

Ans.: (c)

Solution: (i) Molecule $^{17}O_2$ can not absorb infrared as there is no change in dipole moment during vibration. Thus $^{17}O_2$ is infrared inactive.

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- (ii) Molecule $^{17}O_2$ shows change in polaraziability during rotation. Thus it is Raman active molecule.
- (iii) The nucleus of ${}^{17}O$ has spin $\frac{5}{2}$, therefore it is NMR active.
- Q37. There are four electrons in the 3d shell of an isolated atom. The total magnetic moment of the atom in units of Bohr magneton is _____.

Ans.: 0

Solution: The configuration leads to S = 2 and L = 2

Since it is the case of less than half filled sub shell, thus according to Hund's rules, lower J will be in ground state.

$$\therefore J = L - S = 0 \ \vec{\mu}_{\scriptscriptstyle J} = -g \bigg(\frac{e}{2m} \bigg) \vec{J} \ . \label{eq:JJ}$$

Thus, $\vec{\mu} = 0$

- Which of the following transitions is NOT allowed in the case of an atom, according to Q38. the electric dipole radiation selection rule?
 - (a) 2s 1s
- (b) 2p-1s
- (c) 2p 2s
- (d) 3d 2p

Ans.: (a)

- Solution: In electron dipole transition, $\Delta l = \pm 1$. Thus in transition $2s \rightarrow 1s$, $\Delta l = 0$. It violate the selection rule and hence not allowed.
- The number of spectroscopic terms resulting from the L.S coupling of a 3p electron and Q39. a 3d electron is

Ans.: 12

Solution: For $3p^13d^1$: $s_1 = \frac{1}{2}, s_2 = \frac{1}{2}$: S = 0,1

$$s_1 = \frac{1}{2}, s_2 = \frac{1}{2} \therefore S = 0,1$$

$$l_1 = 1, l_2 = 2$$
 : $L = 1, 2, 3$

$$S = 0, L = 1 \Rightarrow J = 1$$
 :. Term = ${}^{1}P_{1}$

$$\therefore$$
 Term = ${}^{1}P_{1}$

$$S = 0, L = 2 \Rightarrow J = 2$$
 :. Term = ${}^{1}D_{2}$

$$\therefore$$
 Term = ${}^{1}D_{2}$

$$S = 0, L = 3 \Rightarrow J = 3$$
 :. Term = ${}^{1}F_{3}$

$$\therefore$$
 Term = ${}^{1}F_{2}$

$$S = 1, L = 1 \Rightarrow J = 0, 1, 2$$
 :. Terms = ${}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$

$$\therefore \text{ Terms} = {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

$$S = 1, L = 2 \Rightarrow J = 1, 2, 3$$

$$S = 1, L = 2 \Rightarrow J = 1, 2, 3$$
 :. Terms = ${}^{3}D_{1}, {}^{3}D_{2}, {}^{3}D_{3}$

$$S = 1, L = 3 \Rightarrow J = 2, 3, 4$$

$$S = 1, L = 3 \Rightarrow J = 2,3,4$$
 :. Terms = ${}^{3}F_{2}$, ${}^{3}F_{3}$, ${}^{3}F_{4}$

Thus total number of spectroscopic terms are 12.

GATE-2017

- O40. The wavefunction of which orbital is spherically symmetric:
 - (a) p_{y}
- (b) p_{v}
- (c) s

(d) d_{xy}

Ans.: (c)

Solution: For *s* orbital l = 0

The total energy of an inert-gas crystal is given by $E(R) = \frac{0.5}{R^{12}} - \frac{1}{R^6}$ (in eV), where R is the inter-atomic spacing in Angstroms. The equilibrium separation between the atoms is Angstroms. (up to two decimal places)

Ans.: 1

Solution: Given that
$$E(R) = \frac{0.5}{R^{12}} - \frac{1}{R^6}$$

For equilibrium separation

$$\frac{dE}{dR} = 0 \Rightarrow \frac{dE}{dR} = -\frac{12 \times 0.5}{R^{13}} + \frac{6}{R^7} = 0 \Rightarrow \frac{1}{R^6} \left[\frac{-6}{R^6} + 6 \right] = 0 \Rightarrow R = 1$$

- Which one of the following gases of diatomic molecules is Raman, infrared, and NMR Q42. active?
 - (a) ${}^{1}H {}^{1}H$
- (b) ${}^{12}C^{-16}O$ (c) ${}^{1}H^{-35}Cl$ (d) ${}^{16}O^{-16}O$

Ans.: (c)

Solution:

- (a) ${}^{1}H {}^{1}H$ Infrared inactive
- (b) ${}^{12}C {}^{16}O$ NMR Inactive
- (c) ${}^{1}H {}^{35}Cl$ Raman, infrared & NMR active
- (d) ${}^{16}O {}^{16}O$ Infrared, Raman inactive

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- Q43. Using Hund's rule the total angular momentum quantum number J for the electronic ground state of the nitrogen atom is
 - (a) $\frac{1}{2}$
- (b) $\frac{3}{2}$
- (c) 0
- (d) 1

Ans.: (b)

Solution: $N:7:1s^22s^22p^3$

For p^3 : $M_L = \begin{array}{c|c} -1 & 0 & +1 \\ \hline \uparrow & \uparrow & \uparrow \end{array}$

 \therefore spectral term = ${}^{2s+1}L_J = {}^4S_{3/2}$

Ans.: 1.06

Solution: $r_n = a_0 \left(\frac{m_e}{\mu} \right)$

When $\mu = \frac{m_e m_e}{m_e + m_e} = \frac{m_e^2}{2m_e} = \frac{m_e}{2}$

 $\therefore r_n = 2a_0 = 2 \times 0.53 = 1.06A^0$

GATE-2018

Q45. Which one of the following represents the 3p radial wave function of hydrogen atom? (a_0 is the Bohr radius)

Ans. : (b)

Solution: 3p radial wave function is $R_{31}\alpha r \left(1 - \frac{r}{6a_0}\right)e^{-\frac{r}{3a_0}}$

Q46. Given the following table,

Group I	Group II
P: Stern-Gerlach experiment	1: Wave nature of particles
Q: Zeeman effect	2: Quantization of energy of electrons in the atoms
R: Frank-Hertz experiment	3: Existence of electron spin
S: Davisson-Germer experiment	4: Space quantization of angular momentum

Which one of the following correctly matches the experiments from Group I to their inferences in Group II?

(a) P-2, Q-3, R-4, S-1

(b) P-1, Q-3, R-2, S-4

(c) P-3, Q-4, R-2, S-1

(d) P-2, Q-1, R-4, S-3

Ans.: (c)

tiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- Q47. The expression for the second overtone frequency in the vibrational absorption spectra of a diatomic molecule in terms of the harmonic frequency ω_e and anharmonicity constant x_e is
 - (a) $2\omega_e (1-x_e)$ (b) $2\omega_e (1-3x_e)$ (c) $3\omega_e (1-2x_e)$ (d) $3\omega_e (1-4x_e)$

Ans. : (d)

Solution:
$$\varepsilon_V = \omega_e \left(v + \frac{1}{2} \right) - \omega_e x_e \left(v + \frac{1}{2} \right)^2$$

Second overtone $v = 0 \rightarrow v = 3$

$$\therefore \overline{v} = \varepsilon_{v=3} - \varepsilon_{v=0} = \frac{7}{2}\omega_e - \omega_e x_e \left(\frac{7}{2}\right)^2 - \frac{\omega_e}{2} + \omega_e x_e \left(\frac{1}{2}\right)^2 = 3\omega_e - 12\omega_e x_e = 3w_e \left(1 - 4x_e\right)$$

Q48. Match the physical effects and order of magnitude of their energy scales given below, where $\alpha = \frac{e^2}{4\pi \in \hbar c}$ is fine structure constant; m_e and m_p are electron and proton mass,

respectively.	
Group I	Group II
P: Lamb shift	1: $\sim O(\alpha^2 m_e c^2)$
Q: Fine structure	$2: \sim O\left(\alpha^4 m_e c^2\right)$
R: Bohr energy	$3: \sim O\left(\alpha^4 m_e^2 c^2 / m_p\right)$
S: Hyperfine structure	4: $\sim O\left(\alpha^5 m_e c^2\right)$

(a) P-3, Q-1, R-2, S-4

(b) P-2, Q-3, R-1, S-4

(c) P-4, Q-2, R-1, S-3

(d) P-2, Q-4, R-1, S-3

Ans.: (c)

Solution:- Bohr energy $\Delta E \propto \alpha^2 m_e c^2$

Fine structure $\Delta E \propto \alpha^4 m_e c^2$

Lamb straight $\Delta E \propto \alpha^5 m_e c^2$

Hyperfine structure $\Delta E \propto \frac{\alpha^4 m_e c^2}{m_p}$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- The intrinsic/permanent electric dipole moment in the ground state of hydrogen atom is Q49. (a_0 is the Bohr radius)
 - (a) $-3ea_0$
- (b) zero
- (c) ea_0
- (d) $3ea_0$

Ans.: (b)

Solution: For dipole moment energy is $-eEr\cos\theta$

$$E_1^1 = \langle -eEr\cos\theta \rangle = eE\langle r \rangle \langle \cos\theta \rangle = 0$$

[::
$$\langle \cos \theta \rangle = 0$$
]

- Q50. Which one of the following is an allowed electric dipole transition?
 - (a) ${}^{1}S_{0} \rightarrow {}^{3}S_{1}$
- (b) ${}^{2}P_{3/2} \rightarrow {}^{2}D_{5/2}$ (c) ${}^{2}D_{5/2} \rightarrow {}^{2}P_{1/2}$ (d) ${}^{3}P_{0} \rightarrow {}^{5}D_{0}$

Ans.: (b)

Solution: For electric dipole transition

$$\Delta L = 0, \pm 1 \quad (0 \rightarrow 0), \ \Delta J = 0. \pm 1, \ \Delta S = 0$$

Only option (b) satisfies above selection rules

- Q51. The term symbol for the electronic ground state of oxygen atom is
 - (a) ${}^{1}S_{0}$
- (b) ${}^{1}D_{2}$
- (d) ${}^{3}P_{2}$

Ans. : (d)

Solution: $O: 1s^2, 2s^2, 2p^4$

Here, S=1, L=2

$$M_L = -1 \quad 0 \quad +1$$

$$\uparrow \downarrow \quad \uparrow \quad \uparrow$$

According to Hund's rule, for ground state energy

$$J = (L + S) = 2$$
 : $^{2S+1}L_I = {}^{3}P_2$

$$\therefore ^{2S+1}L_{J}={}^{3}P$$

 $4 \, MeV \, \gamma$ - rays emitted by the de-excitation of ^{19}F are attributed, assuming spherical Q52. symmetry, to the transition of protons from $1d_{3/2}$ state to $1d_{5/2}$ state. If the contribution of spin-orbit term to the total energy is written as $C\langle \vec{l} \cdot \vec{s} \rangle$, the magnitude of C is _____ MeV (up to one decimal place).

Ans.: 1.6

Solution: $l = 1, s = \frac{1}{2}, \hat{j}_1 = \frac{3}{2}, \hat{j}_2 = \frac{5}{2}$

$$\overline{j} = (\overline{l} + \overrightarrow{s}) \Rightarrow j^2 = l^2 + s^2 + 2\overrightarrow{l} \cdot \overline{s} \Rightarrow \overrightarrow{l} \cdot \overrightarrow{s} = \frac{(j^2 + l^2 - s^2)}{2}$$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

$$\begin{split} \left\langle \vec{l} \cdot \vec{s} \right\rangle &= \frac{\left[j \left(j + 1 \right) - \left(l + 1 \right) - s \left(s + 1 \right) \right] \hbar^2}{2} \\ \Delta E &= \alpha \left[\left\langle \vec{l} \cdot \vec{s} \right\rangle_{5/2} - \left\langle \vec{l} \cdot \vec{s} \right\rangle_{3/2} \right] = \alpha \left[\frac{5}{2} \cdot \frac{7}{2} - \frac{3}{2} \cdot \frac{5}{2} \right] \frac{\hbar^2}{2} = \alpha \cdot \left(\frac{20}{8} \right) \hbar^2 = \frac{20}{8} \cdot C \\ \Delta E &= \frac{20}{8} C = 4 MeV \Rightarrow C = \frac{32}{20} MeV, C = 1.6 MeV \; . \end{split}$$

Q53. An atom in its singlet state is subjected to a magnetic field. The Zeeman splitting of its 650 nm spectral line is 0.03 nm. The magnitude of the field is ______ Tesla (up to two decimal places).

$$(e=1.60\times10^{-19}C, m_e=9.11\times10^{-31}kg, c=3.0\times10^8ms^{-1})$$

Ans.: 1.52

Solution: $\Delta \lambda = \frac{\lambda^2}{c} \times \frac{eB}{4\pi m}$ $\Rightarrow B = \frac{c}{\lambda^2} \cdot \frac{4\pi m}{e} \Delta \lambda = \frac{3 \times 10^8}{\left(650 \times 10^{-9}\right)^2} \cdot \frac{4\pi \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19}} \cdot \left(0.03 \times 10^{-9}\right) = 1.52T$

GATE-2019

Q54. The spin-orbit interaction term of an electron moving in a central field is written as $f(r)\vec{l}\cdot\vec{s}$, where r is the radial distance of the electron from the origin. If an electron moves inside a uniformly charged sphere, then

(a)
$$f(r) = \text{constant}$$
 (b) $f(r) \propto r^{-1}$ (c) $f(r) \propto r^{-2}$ (d) $f(r) \propto r^{-3}$

Ans.: (a)

Solution: The electric potential of a uniformly charged sphere at r < R is

$$V = \frac{kQ}{2R} \left(3 - \frac{r^2}{R^2} \right)$$

where Q is the electric charge on the sphere of radius R and k is a constant.

The interaction energy is $W = f(r)\vec{l} \cdot \vec{s}$, where for central potential V, $f(r) = \frac{1}{r} \left(\frac{\partial V}{\partial r} \right)$

 $\therefore f(r) = \frac{1}{r} \left[\frac{-kQr}{R^3} \right] = \frac{-kQ}{R^3} = \text{constant. Thus option (a) is correct.}$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q55. The ground state electronic configuration of the rare-earth ion (Nd^{3+}) is $[Pd]4f^35s^25p^6$.

Assuming LS coupling, the Lande g- factor of this ion is $\frac{8}{11}$. The effective magnetic moment in units of Bohr magneton μ_B (rounded off to two decimal places) is

Ans.: 3.62

$$\therefore \mu = g_J \mu_B \sqrt{J(J+1)} = \frac{8}{11} \times \mu_B \times \sqrt{\frac{9}{2} \left(\frac{9}{2} + 1\right)}$$

$$=\frac{8}{11}\sqrt{\frac{9}{2}\times\frac{11}{2}}\mu_{B}=3.62\,\mu_{B}$$